有收益资产欧式期权平价公式(期权平价公式套利)
1、求如何证明 欧式看涨期权与看跌期权价格的平价关系
假设两个投资组合
A: 一个看涨期权和一个无风险债券,看涨期权的行权价=X,无风险债券的到期总收益=X
B: 一个看跌期权和一股标的股票,看跌期权的行权价格=X,股票价格为S
投资组合A的价格为看涨期权价格(C)+无风险债券价格(PV(X))。PV(X)为债券现值。
投资组合B的价格为看跌期权价格(P)+股票价格S
画图或者假设不同的到期情况可以发现,A、B的收益曲线完全相同。根据无套利原理,拥有相同收益曲线的两个投资组合价格必然相同。所以 C+PV(X)=P+S,变形可得C-P=S-PV(X)
2、关于欧式看涨期权的一道计算题。求解!
想回答,马上考试,明后天来回答。
3、美式期权和欧式期权的计算公式
难道没有题目么?
这两个怎么计算你想计算什么? 问题详细点。
4、1.试推导出欧式看涨看跌期权的价格平价等式。2.上题中是否存在套利机会,如何套利?
1.欧式看涨期权理论价格C=SN(d1)-N(d2)Ke^[-r(T-t)],欧式看跌期权理论价格P=N(-d2)Ke^[-r(T-t)]-SN(-d1),把看涨期权理论价格公式减去看跌期权理论价格公式化简后可得Call-Put平价公式为P+S=C+Ke^[-r(T-t)]
2.根据平价公式依题意可知,K=45,C=8,P=1,e^-r=1/(1+10%),T-t=3/12=1/4,S=50。
(注题目中没有说明无风险利率是否连续,这是按不连续算的e^-r,由于是3个月期,对于T-t是按年化来计算的。)
把相关数值代入平价公式可得1+50<8+45/(1+10%)^(1/4)=51.94,存在套利机会。
应该通过持有该期权标的物和买入看跌期权,并且卖出看涨期权构成一个套利头寸组合。
3.当股票价格为40元,看跌期权进行行权,获得5元(45-40)的期权价值,扣除1元购入看跌期权成本,实际获利4元;标的物股票亏损10元(50-40);卖出的看涨期权,由于标的物股票价格低于执行价格,故此看涨期权是不会行权的,所以卖出的看涨期权获利为卖出时的期权费8元。综合上述情况,套利利润为4-10+8=2元。
5、求期权套利策略
这题的套利策略可以依据Call-Put平价公式为P+S=C+Ke^[-r(T-t)]来进行,看那一方的价值偏高做空,看那一方的价值偏低做多,形成一个组合套利策略,依题意可知,C=P=3,S=25,e^[-r(T-t)]=1/(1+10%3/12)=1/1.025,但缺少K即期权的行权价格或执行价格。
如果通过公式两边平衡时,K的价格为24.39元,也就是说,当期权的行权价格高于24.39元时,可以买入看跌期权和卖出看涨期权进行组合套利,当期权的行权价格低于24.39元时,可以卖出看跌期权和买入看涨期权进行组合套利,注意这是忽略相关的交易成本。
6、美式期权的平价公式
C+Ke^(-rT)=P+S0 平价公式是根据无套利原则推导出来的。 构造两个投资组合。 1、看涨期权C,行权价K,距离到期时间T。现金账户Ke^(-rT),利率r,期权到期时恰好变成K。 2、看跌期权P,行权价K,距离到期时间T。标的物股票,现价S0。 看到期时这...
应该是Ke^(-rT),K乘以e的-rT次方。也就是K的现值。e的-rT次方是连续复利的折现系数。 平价公式是根据无套利原则推导出来的。 构造两个投资组合。 看涨期权C,行权价K,距离到期时间T。现金账户Ke^(-rT),利率r,期权到期时恰好变成K。 看跌期权...
期权的价格与价值期权的价格就是期权费。以下是决定期权价格的六大变量现货价格(Spotprice); 合同价格(Strikeprice); 合同期(Expirationdate); 波幅(Volatility); 本国利率(Interestrate); (股票)分红率(Dividendyield)(如果是外汇期权,...
1、看涨期权推导公式 C=SN(d1)-Ke^(-rT)N(d2) 其中 d1=(ln(S/K)+(r+0.5б^2)T/бT^(1/2) d2=d1-бT^(1/2) S-------标的当前价格 K-------期权的执行价格 r -------无风险利率 T-------行权价格距离现在到期日(期权剩余的天数/365) N(d)---...
你所说的参数delta gamma是BS期权定价模型里面的吧。 BS模型本身是针对欧式期权的。对于美式期权要根据具体情况计算 1对于无收益资产的期权而言 可以适用于美式看涨期权,因为在无收益情况下,美式看涨期权提前执行是不可取的,它的期权执行...
假设两个投资组合 A: 一个看涨期权和一个无风险债券,看涨期权的行权价=X,无风险债券的到期总收益=X B: 一个看跌期权和一股标的股票,看跌期权的行权价格=X,股票价格为S 投资组合A的价格为看涨期权价格(C)+无风险债券价格(PV(X))。PV...
,平价期权只是指执行价格=实时股票价格,并没有说delta=0.5,你要的公式是((Cu-Cd)/(S(u-d)))e^-deltah, delta是分红率
平价期权 At the Money是指执行价格与个人外汇买卖实时价格相同的期权。 价外期权 Out of the Money是指期权的行使价格高于股票的当前价格. 价内期权 In the Money指执行价格与基础工具的现行远期市场价格相比较为有利的期权。期权越是处...
1.欧式看涨期权理论价格C=SN(d1)-N(d2)Ke^[-r(T-t)],欧式看跌期权理论价格P=N(-d2)Ke^[-r(T-t)]-SN(-d1),把看涨期权理论价格公式减去看跌期权理论价格公式化简后可得Call-Put平价公式为P+S=C+Ke^[-r(T-t)] 2.根据平价公式依题意可知,K=45,C=...
用的是Black-Scholes公式 就是下面这个公式(我只拿了看涨的举例,想看看跌的去这个链接,维基百科http://en.ikipedia./iki/Black%E2%80%93Scholes_model#Black-Scholes_formula) 其中 T是到期时间(单位年) K是执行价格 e是欧拉数...
7、写出欧式看涨期权和看跌期权平价公式并给出证明
C+Ke^(-rT)=P+S0
平价公式是根据无套利原则推导出来的。
构造两个投资组合。
1、看涨期权C,行权价K,距离到期时间T。现金账户Ke^(-rT),利率r,期权到期时恰好变成K。
2、看跌期权P,行权价K,距离到期时间T。标的物股票,现价S0。
看到期时这两个投资组合的情况。
1、股价St大于K投资组合1,行使看涨期权C,花掉现金账户K,买入标的物股票,股价为St。投资组合2,放弃行使看跌期权,持有股票,股价为St。
2、股价St小于K投资组合1,放弃行使看涨期权,持有现金K。投资组合2,行使看跌期权,卖出标的物股票,得到现金K
3、股价等于K两个期权都不行权,投资组合1现金K,投资组合2股票价格等于K。
从上面的讨论我们可以看到,无论股价如何变化,到期时两个投资组合的价值一定相等,所以他们的现值也一定相等。根据无套利原则,两个价值相等的投资组合价格一定相等。所以我们可以得到C+Ke^(-rT)=P+S0。